436 research outputs found

    In Vivo Time- Resolved Microtomography Reveals the Mechanics of the Blowfly Flight Motor

    Get PDF
    Dipteran flies are amongst the smallest and most agile of flying animals. Their wings are driven indirectly by large power muscles, which cause cyclical deformations of the thorax that are amplified through the intricate wing hinge. Asymmetric flight manoeuvres are controlled by 13 pairs of steering muscles acting directly on the wing articulations. Collectively the steering muscles account for <3% of total flight muscle mass, raising the question of how they can modulate the vastly greater output of the power muscles during manoeuvres. Here we present the results of a synchrotron-based study performing micrometre-resolution, time-resolved microtomography on the 145 Hz wingbeat of blowflies. These data represent the first four-dimensional visualizations of an organism's internal movements on sub-millisecond and micrometre scales. This technique allows us to visualize and measure the three-dimensional movements of five of the largest steering muscles, and to place these in the context of the deforming thoracic mechanism that the muscles actuate. Our visualizations show that the steering muscles operate through a diverse range of nonlinear mechanisms, revealing several unexpected features that could not have been identified using any other technique. The tendons of some steering muscles buckle on every wingbeat to accommodate high amplitude movements of the wing hinge. Other steering muscles absorb kinetic energy from an oscillating control linkage, which rotates at low wingbeat amplitude but translates at high wingbeat amplitude. Kinetic energy is distributed differently in these two modes of oscillation, which may play a role in asymmetric power management during flight control. Structural flexibility is known to be important to the aerodynamic efficiency of insect wings, and to the function of their indirect power muscles. We show that it is integral also to the operation of the steering muscles, and so to the functional flexibility of the insect flight motor

    Ivermectin as a novel complementary malaria control tool to reduce incidence and prevalence: a modelling study

    Get PDF
    BACKGROUND: Ivermectin is a potential new vector control tool to reduce malaria transmission. Mosquitoes feeding on a bloodmeal containing ivermectin have a reduced lifespan, meaning they are less likely to live long enough to complete sporogony and become infectious. We aimed to estimate the effect of ivermectin on malaria transmission in various scenarios of use. METHODS: We validated an existing population-level mathematical model of the effect of ivermectin mass drug administration (MDA) on the mosquito population and malaria transmission against two datasets: clinical data from a cluster- randomised trial done in Burkina Faso in 2015 wherein ivermectin was given to individuals taller than 90 cm and entomological data from a study of mosquito outcomes after ivermectin MDA for onchocerciasis or lymphatic filariasis in Burkina Faso, Senegal, and Liberia between 2008 and 2013. We extended the existing model to include a range of complementary malaria interventions (seasonal malaria chemoprevention and MDA with dihydroartemisinin-piperaquine) and to incorporate new data on higher doses of ivermectin with a longer mosquitocidal effect. We consider two ivermectin regimens: a single dose of 400 μg/kg (1 × 400 μg/kg) and three consecutive daily doses of 300 μg/kg per day (3 × 300 μg/kg). We simulated the effect of these two doses in a range of usage scenarios in different transmission settings (highly seasonal, seasonal, and perennial). We report percentage reductions in clinical incidence and slide prevalence. FINDINGS: We estimate that MDA with ivermectin will reduce prevalence and incidence and is most effective in areas with highly seasonal transmission. In a highly seasonal moderate transmission setting, three rounds of ivermectin only MDA at 3 × 300 μg/kg (rounds spaced 1 month apart) and 70% coverage is predicted to reduce clinical incidence by 71% and prevalence by 34%. We predict that adding ivermectin MDA to seasonal malaria chemoprevention in this setting would reduce clinical incidence by an additional 77% in children younger than 5 years compared with seasonal malaria chemoprevention alone; adding ivermectin MDA to MDA with dihydroartemisinin-piperaquine in this setting would reduce incidence by an additional 75% and prevalence by an additional 64% (all ages) compared with MDA with dihydroartemisinin-piperaquine alone. INTERPRETATION: Our modelling predictions suggest that ivermectin could be a valuable addition to the malaria control toolbox, both in areas with persistently high transmission where existing interventions are insufficient and in areas approaching elimination to prevent resurgence. FUNDING: Imperial College Junior Research Fellowship

    Interpol: An R package for preprocessing of protein sequences

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Most machine learning techniques currently applied in the literature need a fixed dimensionality of input data. However, this requirement is frequently violated by real input data, such as DNA and protein sequences, that often differ in length due to insertions and deletions. It is also notable that performance in classification and regression is often improved by numerical encoding of amino acids, compared to the commonly used sparse encoding.</p> <p>Results</p> <p>The software "Interpol" encodes amino acid sequences as numerical descriptor vectors using a database of currently 532 descriptors (mainly from AAindex), and normalizes sequences to uniform length with one of five linear or non-linear interpolation algorithms. Interpol is distributed with open source as platform independent R-package. It is typically used for preprocessing of amino acid sequences for classification or regression.</p> <p>Conclusions</p> <p>The functionality of Interpol widens the spectrum of machine learning methods that can be applied to biological sequences, and it will in many cases improve their performance in classification and regression.</p

    Prevalence of Malaria and Anaemia among HIV Infected Pregnant women Receiving Co-trimoxazole Prophylaxis in Tanzania: A Cross Sectional Study in Kinondoni Municipality.

    Get PDF
    HIV-infected pregnant women are particularly more susceptible to the deleterious effects of malaria infection particularly anaemia. In order to prevent opportunistic infections and malaria, a policy of daily co-trimoxazole prophylaxis without the standard Suphadoxine-Pyrimethamine intermittent preventive treatment (SP-IPT) was introduced to all HIV infected pregnant women in the year 2011. However, there is limited information about the effectiveness of this policy. This was a cross sectional study conducted among HIV-infected pregnant women receiving co-trimoxazole prophylaxis in eight public health facilities in Kinondoni Municipality from February to April 2013. Blood was tested for malaria infection and anaemia (haemoglobin <11 g/dl). Data were collected on the adherence to co-trimoxazole prophylaxis and other risk factors for malaria infection and anaemia. Pearson chi-square test, Fischer's exact test and multivariate logistic regression were used in the statistical analysis. This study enrolled 420 HIV infected pregnant women. The prevalence of malaria infection was 4.5%, while that of anaemia was 54%. The proportion of subjects with poor adherence to co-trimoxazole was 50.5%. As compared to HIV infected pregnant women with good adherence to co-trimoxazole prophylaxis, the poor adherents were more likely to have a malaria infection (Adjusted Odds Ratio, AOR = 6.81, 95%CI = 1.35-34.43, P = 0.02) or anaemia (AOR = 1.75, 95%CI = 1.03-2.98, P = 0.039). Other risk factors associated with anaemia were advanced WHO clinical stages, current malaria infection and history of episodes of malaria illness during the index pregnancy. The prevalence of malaria was low; however, a significant proportion of subjects had anaemia. Good adherence to co-trimoxazole prophylaxis was associated with reduction of both malaria infection and anaemia among HIV infected pregnant women

    A System for the Synchronized Recording of Sonomyography, Electromyography and Joint Angle

    Get PDF
    Ultrasound and electromyography (EMG) are two of the most commonly used diagnostic tools for the assessment of muscles. Recently, many studies reported the simultaneous collection of EMG signals and ultrasound images, which were normally amplified and digitized by different devices. However, there is lack of a systematic method to synchronize them and no study has reported the effects of ultrasound gel to the EMG signal collection during the simultaneous data collection. In this paper, we introduced a new method to synchronize ultrasound B-scan images, EMG signals, joint angles and other related signals (e.g. force and velocity signals) in real-time. The B-mode ultrasound images were simultaneously captured by the PC together with the surface EMG (SEMG) and the joint angle signal. The deformations of the forearm muscles induced by wrist motions were extracted from a sequence of ultrasound images, named as Sonomyography (SMG). Preliminary experiments demonstrated that the proposed method could reliably collect the synchronized ultrasound images, SEMG signals and joint angle signals in real-time. In addition, the effect of ultrasound gel on the SEMG signals when the EMG electrodes were close to the ultrasound probe was studied. It was found that the SEMG signals were not significantly affected by the amount of the ultrasound gel. The system is being used for the study of contractions of various muscles as well as the muscle fatigue

    An affordable, quality-assured community-based system for high-resolution entomological surveillance of vector mosquitoes that reflects human malaria infection risk patterns.

    Get PDF
    ABSTRACT: BACKGROUND: More sensitive and scalable entomological surveillance tools are required to monitor low levels of transmission that are increasingly common across the tropics, particularly where vector control has been successful. A large-scale larviciding programme in urban Dar es Salaam, Tanzania is supported by a community-based (CB) system for trapping adult mosquito densities to monitor programme performance. Methodology An intensive and extensive CB system for routine, longitudinal, programmatic surveillance of malaria vectors and other mosquitoes using the Ifakara Tent Trap (ITT-C) was developed in Urban Dar es Salaam, Tanzania, and validated by comparison with quality assurance (QA) surveys using either ITT-C or human landing catches (HLC), as well as a cross-sectional survey of malaria parasite prevalence in the same housing compounds. RESULTS: Community-based ITT-C had much lower sensitivity per person-night of sampling than HLC (Relative Rate (RR) [95% Confidence Interval (CI)] = 0.079 [0.051, 0.121], P < 0.001 for Anopheles gambiae s.l. and 0.153 [0.137, 0.171], P < 0.001 for Culicines) but only moderately differed from QA surveys with the same trap (0.536 [0.406,0.617], P = 0.001 and 0.747 [0.677,0.824], P < 0.001, for An. gambiae or Culex respectively). Despite the poor sensitivity of the ITT per night of sampling, when CB-ITT was compared with QA-HLC, it proved at least comparably sensitive in absolute terms (171 versus 169 primary vectors caught) and cost-effective (153USversus187US versus 187US per An. gambiae caught) because it allowed more spatially extensive and temporally intensive sampling (4284 versus 335 trap nights distributed over 615 versus 240 locations with a mean number of samples per year of 143 versus 141). Despite the very low vectors densities (Annual estimate of about 170 An gambiae s.l bites per person per year), CB-ITT was the only entomological predictor of parasite infection risk (Odds Ratio [95% CI] = 4.43[3.027,7. 454] per An. gambiae or Anopheles funestus caught per night, P =0.0373). Discussion and conclusion CB trapping approaches could be improved with more sensitive traps, but already offer a practical, safe and affordable system for routine programmatic mosquito surveillance and clusters could be distributed across entire countries by adapting the sample submission and quality assurance procedures accordingly

    Animal-related factors associated with moderate-to-severe diarrhea in children younger than five years in western Kenya: A matched case-control study

    Get PDF
    Background Diarrheal disease remains among the leading causes of global mortality in children younger than 5 years. Exposure to domestic animals may be a risk factor for diarrheal disease. The objectives of this study were to identify animal-related exposures associated with cases of moderate-to-severe diarrhea (MSD) in children in rural western Kenya, and to identify the major zoonotic enteric pathogens present in domestic animals residing in the homesteads of case and control children. Methodology/Principal findings We characterized animal-related exposures in a subset of case and control children (n = 73 pairs matched on age, sex and location) with reported animal presence at home enrolled in the Global Enteric Multicenter Study in western Kenya, and analysed these for an association with MSD. We identified potentially zoonotic enteric pathogens in pooled fecal specimens collected from domestic animals resident at children’s homesteads. Variables that were associated with decreased risk of MSD were washing hands after animal contact (matched odds ratio [MOR] = 0.2; 95% CI 0.08–0.7), and presence of adult sheep that were not confined in a pen overnight (MOR = 0.1; 0.02–0.5). Variables that were associated with increased risk of MSD were increasing number of sheep owned (MOR = 1.2; 1.0–1.5), frequent observation of fresh rodent excreta (feces/urine) outside the house (MOR = 7.5; 1.5–37.2), and participation of the child in providing water to chickens (MOR = 3.8; 1.2–12.2). Of 691 pooled specimens collected from 2,174 domestic animals, 159 pools (23%) tested positive for one or more potentially zoonotic enteric pathogens (Campylobacter jejuni, C. coli, non-typhoidal Salmonella, diarrheagenic E. coli, Giardia, Cryptosporidium, or rotavirus). We did not find any association between the presence of particular pathogens in household animals, and MSD in children. Conclusions and significance Public health agencies should continue to promote frequent hand washing, including after animal contact, to reduce the risk of MSD. Future studies should address specific causal relations of MSD with sheep and chicken husbandry practices, and with the presence of rodents

    Orientia tsutsugamushi in Human Scrub Typhus Eschars Shows Tropism for Dendritic Cells and Monocytes Rather than Endothelium

    Get PDF
    Scrub typhus is a common and underdiagnosed cause of febrile illness in Southeast Asia, caused by infection with Orientia tsutsugamushi. Inoculation of the organism at a cutaneous mite bite site commonly results in formation of a localized pathological skin reaction termed an eschar. The site of development of the obligate intracellular bacteria within the eschar and the mechanisms of dissemination to cause systemic infection are unclear. Previous postmortem and in vitro reports demonstrated infection of endothelial cells, but recent pathophysiological investigations of typhus patients using surrogate markers of endothelial cell and leucocyte activation indicated a more prevalent host leucocyte than endothelial cell response in vivo. We therefore examined eschar skin biopsies from patients with scrub typhus to determine and characterize the phenotypes of host cells in vivo with intracellular infection by O. tsutsugamushi, using histology, immunohistochemistry, double immunofluorescence confocal laser scanning microscopy and electron microscopy. Immunophenotyping of host leucocytes infected with O. tsutsugamushi showed a tropism for host monocytes and dendritic cells, which were spatially related to different histological zones of the eschar. Infected leucocyte subsets were characterized by expression of HLADR+, with an “inflammatory” monocyte phenotype of CD14/LSP-1/CD68 positive or dendritic cell phenotype of CD1a/DCSIGN/S100/FXIIIa and CD163 positive staining, or occasional CD3 positive T-cells. Endothelial cell infection was rare, and histology did not indicate a widespread inflammatory vasculitis as the cause of the eschar. Infection of dendritic cells and activated inflammatory monocytes offers a potential route for dissemination of O. tsutsugamushi from the initial eschar site. This newly described cellular tropism for O. tsutsugamushi may influence its interaction with local host immune responses
    corecore